Calculus II - Day 2

Prof. Chris Coscia, Fall 2024
Notes by Daniel Siegel

9 September 2024

1 Lecture Goals

e Use the squeeze theorem.
e Define what it means to be monotonic and state the monotonic convergence theorem.

e Define what it means for a sequence {a,} to ”grow faster” than another sequence {b,} (de-
noted as {an} > {bn}).
2 Reminders

e Gradescope HW 0: due Tuesday by midnight
e myLab HW 1: due Wednesday by noon

3 Warm-up
Find the limits of the following sequence:
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4 Limit Laws
Assume lim a,, = A and lim b, = B. Then:
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Squeeze Theorem for Limits: If a, < ¢, < b, for all n and
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lim ¢, = L, as well.
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Since we know that cos(n) is always between —1 and 1, and that (n?+1) trends towards infinity,
the limit will approach 0 as the denominator grows without bound.

Example: Compute lim
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Using the squeeze theorem, we compare the sequences {a,} = {—n%ﬂ} and {b,} = {n%ﬂ}
For all n:
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Squeeze Terminology

e {a,} is increasing if a,,+1 > a, for all n.

{a,} is nondecreasing if a,+1 > a, for all n.

{an} is decreasing if ap4+1 < a, for all n.

{an} is nonincreasing if a,+1 < a, for all n.

{a,} is monotonic if it is either nonincreasing or nondecreasing.

Example: The sequence {1,1,2,2,3,3,4,4,...} is not increasing (there are "ties”), but it is
nondecreasing and therefore monotonic.

Example: The sequence {1 + %}Zozl starts as {2, %, %, %, .. }

The sequence is decreasing, and therefore nonincreasing and monotonic.
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Definition: {a,} is bounded above if there is a number M such that
an < M for every n
e bounded below if there is a number m such that

an > m for every n

e bounded if it is both bounded above and bounded below.

Monotone Convergence Theorem:
Every bounded monotonic sequence converges. In fact:

1) Every nonincreasing sequence bounded above converges.

M m
2) Every nonincreasing sequence bounded below converges.

Q: Which sequence grows faster, {n?} or {2"}?
Let’s look at:
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The denominator ”overpowers” the numerator, making the limit 0. We write {2} > {n?} (the
> signifies that 2" is approaching infinity faster, letting us determine which grows faster).
We say that {a,} ”grows faster” than {b,} if:
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We say that {a,} and {b,} have the same growth rate if
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Example: Which grows faster, {2"} or {n!}?
Reminder: n!l=n(n—1)(n—-2)...3-2-1
Consider the sequence {3—: }
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Now, consider the next term in the sequence:
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Example: Which grows faster: {n!} or {n"}?
n" > n!
Note: Consider the sequence {:—L}
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As n — oo, this product tends to 0, so we conclude that {n"} > {n!}, meaning n™ grows faster

than n!.
Growth rate hierarchy:

{In(n)?} < {n?} < {n”In(n)"} < {nPT*} < {1"} < {n!} < {n"}
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